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Knowledge of the coefficient of reflection of a sound wave from the open 
end of a circular tub% is essential for the study of oscillating coabus- 
tion h-31. In the strict sense the problem of the diffrection of sound 
w%v%s %t tbe open end of % circular tube with rigid aalls aftbout & 
flange b%s bee% solved in [4-71. There, it was assumed that the medium 
outside and inside the tube is homogeneous and at rest. In problems re- 
lsted to eombnstion the g%s is moving. The medium outside the tub% should 
not be considered homogeneous since combustion products that esoape from 
the tube may considerably differ in their properties from the gas sur- 
rounding the tube. One m%y select a case wbere the flow velocity is small 
%nd hss no influence upon the radiation of sound from the tube, aheress 
tba difference of the thermodynamic parameters of the gas in the stream 
and the surrounding space does significantly influence the magnitude of 
the reflection coefficient. An attempt to calculste the effect of non- 

homogeneity of the medium n%s undertake% in kf. However. because of the 
error that was contained there in the writing of the boundary conditions 
it is required that this problem be studied again. This paper presents 8 
derivation of the formula for the coefficient of reflection of 8 plane 
sormd wave from the open end of a circular semi-infinite tube with sbso- 
lutely rigid walls considering 8 contact discontinuity at the boundsry 
between the stream and the surrounding medium. 

The ciroulrrr tube of radius a {Fig. I) with absolutely rigid, fn- 
finitely thin walls is semi-infinite and has no flange. Its sxis coin- 
cides with the z-axis of a cylindrical coordinate system r, z and extends 
along x < 0, Axitrl symmetry is sssumed, 

We study Steady Qibr8tionS, and the time dependence of the parameters 
of the acoustic field is described by a function of the form erP( - iut). 
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Assuming the gas outside and inside the tube to be at rest we can 
write the equations of the acoustic field in the form 

f 
j = 1, 2; kj2 = $- ; 

‘j 
Here cj is the speed of sound. The indices 1 and 2 refer to the para- 

meters of the medium in the regions r < a and r > a, respectively. The 
velocity potential yj is related to the acoustic pressure and velocity by 
the relations 

Pj = L”P*j*j* vj = m#, hi is the density of the medium) (2) 

The potential yj should satisfy the following boundary conditions 

pd#1= Pi&Z at r=a, z>O (5) 

A plane sound wave of amplitude A impinges 

Fig. 1. from the left on the mouth of the tube. A di- 
verging wave is created outside the tube, and 

a plane wave of amplitude B is reflected inside the tube. The ratio 

R = B/d becomes the unknown coefficient of reflection of a plane wave 
from the mouth of a tube. We shall assume that k a < 3.832; then the 
plane mode will be a unique mode of propagation 9,lO . Consequently t 1 

41 - A&Z + Be-W as z __, - co (6) 

At sufficiently large distances from the mouth of the tube one can 
write yya as 

eikhR 

472 - f @I 7 
at R = vra + z2 -c m (7) 

Here 8 is at a given point the angle between the wave front and the 
z-axis. 

Let us introduce into the study the following functions 

According to (3) and (5) 
h(z)fO, w(z)=0 at z<C; h (2) = 0, w(z)#C at .z>o (9) 

After carrying out a Fourier transformation and denoting the transforms 



The 

by capital letters we obtain 

m 

Yj(C* r) = 
s 

$j (I, r) e-‘Crdz 

--a, 

Instead of (1) we now have 

+(kjB-_a)‘sj=O (i=% 2) 
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(10) 

(11) 

The solutions of Fquations (11). which satisfy the condition of 
emission at infinity and of finiteness at the z-axis, become 

~l(6, 4 = c (5) Jo (r nF=F), YaK. 4 = D (5) f&P) (r vQ=Fj (12) 

Here J, is an nth order Bessel function of real argument. H,,(l) is an 

nth order Hankel function of the first kind, C(c) and D(5) are arbitrary 
functions. 

From (8) and (12) it follows that 

H (t) = E D (5) @) (a Y?m - C (0 JO (a dk? - 6’) (13) 

W (5) = - vw C (C) J1 (U v/k18 - La) = - vm D (f) Hi’) (a vka’ - 6%) (14) 

Eliminating the arbitrary functions C(E) and D(<) from (13) and (14) 
we obtain 

L (5) = 
2Po1J1 (azl) HP) (aza) Za / Zl 

PoeJo (azl) HP) (a.~) - pmazlJ~ (azl) Hr) (aza) 
(Zj = )/kf-- c’j (16) 

Note that in the limiting case of A 

‘1 

= k, and p,,l = ~~2, Equation 

(15) goes over to Equation (V.2) of [7 . 

It is more convenient to continue the analysis if it is assume that 
they have small imaginary the constants kj are complex numbers and that 

parts Im kj > 0. 

We shall show that 

From the asymptotic behavior of the function q~, as z - OJ it follows 
that 
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Here ~(5) is a regular function In the region Im 5 > - Im kl, and con- 

sequently, Formula (17) is correct. Thus, the problem reduces to the 
finding of the function H(c) from Equation (15). Let us study this. Equa- 
tion (15) makes sense only when its left and right sides have a joint 
region of analyticity in the complex plane of the variable 5. The study 
of the properties of the functions H(j) and g(G) does not differ from 
that carried out In [?I. It is evident from (18) that the function 
z,*H(<) is analytic in the half-plane Im 3 > - Im k,. Inasmuch as the 
asymptotic behavior of the function I( Z) as z - 01 allows the inclusion 
of a factor of the form exp(- ikjz) one can assert that the function 
R(3) is analytic in the region Im < 
of the function L(3), 

< Im kj. The region of analyticity 
whose explicit form is given by Formula (16), is 

the strip [Im 31 < gin (Im kj), since the points < = f kj, where the 

singularities occur, lie outside this strip. 

For future reference, it is also essential to note that the function 

L(3) does not go to zero in this strip. Actually, in accordance with the 
previously made assumption, the unique propagating mode in the tube is a 

plane wave. This means that the points j = f i(aln2 - kl 2 l/2 ) , where 

Jl(ol,a) = 0. have a finite imaginary part, and consequently, lie out- 
side the strip of regularity of the function L(3). 

The function Hl(‘)( az2) does not have any zeros in the region - w/2 < 

arg z2 g 3n/2, [ill. Choosing one branch of the function z,(j) we find 

that the argument of this function lies within the :;;its larg z214”/2 
in the studied strip. Consequently, the function H1 (az2) does not have 

any zeros which lie within the strip. 

The studied properties of Equation (15) allow us to find its solution 
with the aid of the Wiener-Hopf technique [121. Using the fact that a 

Fig. 2. 

function which is analytic in the strip 
can be represented in the form of a sum 
of two functions, one of which is analytic 
in the upper half-plane starting from the 
lower edge of the strip, and the other is 
analytic in the lower half-plane starting 
from the upper edge of the strip. we can 
represent L(3) in the form 

L, 
L (cl = L_ (6) 

whereL+ (6) = erp [&- \ lntl_it;dl] 
C+ 

(W 

L_(C)=erp[--i&-J_ lnlL_lt:dt] (20) 
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The contours of integration Ct and C’ and also the regions of regular- 
ity of all studied functions are shown in Fig. 2. In the final result 
one should assume Im k j = 0. When Im k . - 0 the contours C’ and C- co- 
inclde with the real axis with the exciption of the singular points of 
the integrand. The way of circumventing the latter is clear from Fig. 2. 

Using (19) one can write Equation (15) as follows 

Here the left-hand side of Equation (21) is regular in the half-plane 

Im 5 > Max(-Im kj) while the right-hand side is regular in the region 
Im 5 < Min(~m kj) 

Thus Equation (21) describes an integral function in the G-plane. 

The evaluation of the asymptotic behavior of the functions if([) and 
g(g) for large j is carried out just as in [‘I], starting from physical 
considerations of the behavior of the velocity potential and Its deriva- 
t ive as z - Of. One can obtain 

H (f) - (- i6YV1, a>0 for I~[-,Q), Im6>0 (2% 

W (6) - (irp? p<i for (61-,m. Im6<0 (23) 

The evaluation of the asymptotic behavior of L+(j) for large ; can be 
accomplished using the asymptotic behavior of cylindrical functions for 
large values of their arguments and representing L+(j) in the following 
form 

1 
0 

;hen we break up the path of integration into the segments (0, k,) 

and (kZ, a) and take into account the uniform convergence of the inte- 

grals, we can show that 

L+ (6) - (- it)“‘* for 151400, Imc>O (25) 

Similarly 

L-(&l-(it)“’ for lfl-+w, Im5<0 CW 

If we substitute the asymptotic estimates (22), (23), (25) and (26) 
into Equation (21) we find by means of the Liouviile theorem that both 
parts of (21) are equal to a constant. Consequently, 

(27) 
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It follows from (24) that 

L+ (- h)- - L, (kl) (28) 

With the aid of (l?), (27) and (28) we find that 

R = 1 R ) e2ib = - [L+ (kl)]a 

Using the explicit form of the function L+(kl) we obtain an expression 

for the modulus and the phase of the reflection coefficient 

1 R 1 = exp {% rt an-l[- $#] dt - 

0 

k, 
zpJo(Qzl)J~(Qza) - Palzdl (Qzl) Jo (Qzz) 

zaJo (Qzl)Nl(aza) - pa~.dl(@zi) No (Qza) 1 dt -- 
t”-- kla 

0 

k. 
ZaZo (azi*) Ji (aza) + paizi*Zi (azl*) Jo (a%) 

zalo (az?) NI (aza) + pmzi*Zl (QV) No (QzP) 

6 

Here 

kl * 
Fa= - h I 1 -$ II (azl*) 1/J? (Qza) + Nl” (QG] t& 

k, 
kt ,. 

Fs = \ h ([Z~QJ~(QZI)J~(QZ~)-- PuZIQJI (Qzl) ~O(QzZ)~* + 
J 
0 

+ [QZaJo(QZl)N1(Uza)-p~lQzlJl (QZd NO (QZdla}li.t& 

kr 

F, = 
s 

ln ([QZazo (UZl*) $1 (Qza) -k Pt~Qzl*ll (Qzl*) Jo (aza)la + 

dt 
+ [asslo (~zl*)Nl(Qz~) $ PzxQZI*ZI(QZI*) NO (Qh)IaI"'~ 

co 

s I II (azl*) 4 (aan*) as* / Zl* dt 
Fg=- ln Qez*Zo (azi’) Kl (QZs*) + PalQzl*zl (Qzi*) Ko (Qzz*) t” - ha 

kr 
Here Jn is an nth order Bessel function of real argument, Hn is an 

nth order Neumann function, I,, is an nth order Bessel function of imagin- 

ary argument, and Kn is an nth order MacDonald function. 
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Formulas (30) and (31) are true if kg > kl. It is not difficult to 
obtain the corresponding expressions for k, < kl. 

When the vibration frequency o and the radius of the tube a are such 
that kja << 1, one can use in Formula (30) the series representations of 
the cylindrical functions and retain only small terms of first order. 

Then, after integration we find 

Formula (32) holds for k2 > kl. 

When the spdice is occupied by a homogeneous medium it follows from 
(32) that 

IRI=exp[-&*/2], or IRI=l-ksaa/2 

which is in agreement with [+I, 9,101. 

It is interesting to note that according to (32) in the case of a 
heated stream and a cool surrounding gas. when cl/y1 > cZ/y2, the sepa- 
ration from the open end of the tube is larger (the reflection coeffi- 
cient is smaller) than the separation in a homogeneous medium, regard- 
less of whether this medium is characterized by the parameters of 1 or 2. 

The authors wish to express their gratitude to S.S. Grigorian and 
1u.L. Iakimov for their review of these results. 
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